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Abstract 

DNAmicroarraytechnologyhasnowmadeitpossibletosimultaneouslymonitortheexpres- sion levels of thousands of 

genes during important biological processes and across collections of related samples. Elucidating the patterns 

hidden in gene expression data offers a tremen- dous opportunity for an enhanced understanding of functional 

genomics. However, the large number of genes and the complexity of biological networks greatly increase the 

challenges of comprehending and interpreting the resulting mass of data, which often consists of millions of 

measurements. A first step toward addressing this challenge is the use of clustering techniques, which is 

essential in the data mining process store vealnatural structures and identify interesting patterns in the 

underlying data. 

Cluster analysis seeks to partition a given data set into groups based on specified features sothatthedatapoints 

with in a group are more similar to each other than the points in different groups. A very rich literature on 

cluster analysis has developed over the past three decades. Many conventional clustering algorithms have been 

adapted or directly applied to gene expres- siondata, and alsonew algorithms have recently been proposed 

specifically aiming at geneex- pression data. These clustering algorithms have been proven useful for 

identifyingbiologically relevant groups of genes and samples. 

In this paper, we first briefly introduce the concepts of microarray technology and discuss the basic 

elements of clustering on gene expression data. Inparticular,wedivideclusteranalysis for gene expression data 

into three categories. Then we present specific challenges pertinent to each clustering category and introduce 

several representative approaches. We also discuss the problem of cluster validation in three aspects and review 

various methods to assess the quality and reliability of clustering results. Finally, we conclude this paper and 

suggest the promising trends in this field. 

 

I. INTRODUCTION 
Introduction to MicroarrayTechnology 

Measuring mRNAlevels 

Comparedwiththetraditionalapproachtogenomicres

earch,which has focuse donth eloca lexami- nation 

and collection of data on singlegenes,micro array 

technologies have now made it possible to monitor 

the expression levels for tens of thousands of genes 

in parallel. The two major types ofmi- croarray 

experiments are the cDNA microarray [54] and 

oligonucleotide arrays (abbreviated oligo chip)[44]. 

Despitedifferencesinthedetailsoftheirexperimentpro

tocols,bothtypesofexperiments involve three 

common basic procedures[67]: 

Chip manufacture: A microarray is a small 

chip (made of chemically coated glass, 

nylonmembrane or silicon), onto which tens of 

thousands of DNA molecules (probes) are attached 

in fixed grids. Each grid cell relates to a DNA 

sequence. 

Target preparation, labeling and 

hybridization: Typically, two mRNA samples (a 

test sample and a control sample) are reverse-

transcribed into cDNA (targets), labeled using 

either fluo- rescent dyesor radio active isotopics, 

and then hybridized with the probes on the surface 

of the chip. 

The scanning process: Chips are scanned 

to read the signal intensity that is emitted from the 

labeled and hybridized targets. 

Generally, both cDNA microarray and 

oligo chip experiments measure the expression 

level for each DNA sequence by the ratio of signal 

intensity between the test sample and the 

controlsample, therefore, data sets resulting from 

both methods share the same biological semantics. 

In this paper, unless sexplicitly stated, we will 

refertoboththecDNA micro array and the oligochip 

as micro array technology and term the 

measurements collected via both methods as gene 

expressiondata. 

  

Pre-processing of gene expressiondata 

A micro array experiment typically 

assesses a large number of DNA sequences (genes, 

cDNAclones, or expressed sequence tags [ESTs]) 

under multiple conditions. These conditions may be 

a time- series during a biological process (e.g., the 

yeast cell cycle) or a collection of different tissue 

sam- ples (e.g., normal versus cancerous tissues). 

In this paper, we will focus on the cluster analysis 
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of gene expression data withou t making 

adistinction among DNA sequences, which will 

uniformly be called “genes”. Similarly, we will 

uniformly refer to all kinds of experimental 

conditions as “sam- ples” if no confusion will be 

caused. A gene expression data set from a 

microarray experiment can be represented by a 

real-valued expression matrix  (Fig- ure 1(a)), 

where the rows () form the expression patterns of 

genes, the columns   () represent the expression 

profiles of samples, and each cell     is the measured 

expression level of gene in sample . Figure 1 (b) 

includes some notation that will be used in the 

followingsections. 

The original gene expression matrix 

obtained from a scanning process contains noise, 

missing values, and systematic variations arising 

from the experimental procedure. Data pre-

processing is indispensable before any cluster 

analysis can be performed. Some problems of data 

pre-processing have themselves become interesting 

research topics. Those questions are beyond the 

scope of this survey; an examination of the 

problem of missing value estimation appearsin[69], 

and the problem of data normalization is addressed 

in [32, 55]. Furthermore, many clustering 

approaches apply one or more of the following pre-

processing procedures: filtering out genes with 

expression levels which do not change significantly 

across samples; performing a logarithmic 

transformation ofeach expression level; or 

standardizing each row of the gene expression 

matrix with a mean of zero and a variance of one. 

In the following discussion of clustering 

algorithms, we will set aside the details of pre-

processing procedures and assume that the input 

data set has already been properly pre-processed. 

 

Applications of clustering gene expressiondata 

Clusteringtechniqueshaveproventobehelpf

ultounderstandgenefunction,generegulation,cellular

processes,andsubtypesofcells.Geneswithsimilarexp

ressionpatterns(coexpressedgenes)canbeclusteredto

getherwithsimilarcellularfunctions.Thisapproachma

yfurtherunderstandingofthefunctionsofmanygenesf

orwhichinformationhasnotbeenpreviouslyavailable[

66,20].Furthermore,coexpressedgenesinthesameclu

sterarelikelytobeinvolvedinthesamecellularprocesse

s,andastrongcorrelationofexpressionpatternsbetwee

nthosegenesindicatesco-regulation.Search- ing for 

common DNA sequences at the promoter regions 

of genes within the same cluster allows 

regulatorymotifsspecifictoeachgeneclustertobeident

ifiedandcis-regulatoryelementstobepro- posed [9, 

66]. The inference of regulation through the 

clustering of gene expression data also gives rise to 

hypotheses regarding the mechanism of the 

transcriptional regulatory network [16]. Finally, 

clustering different samples on the basis of 

corresponding expression profiles may reveal sub-

cell types which are hard to identify by traditional 

morphology-based approaches [2,24]. 

 

Introduction to ClusteringTechniques 

In this subsection, we will first introduce the 

concepts of clusters and clustering. We will then 

divide the clustering tasks for gene expression data 

into three categories according to different 

clustering purposes. Finally, we will discuss the 

issue of proximity measure indetail. 

  

Clusters andclustering 

Clustering is the process of grouping data 

objects into a set of disjoint classes, called clusters, 

so that objects within a class have high similarity to 

each other, while objects in separate classes are 

more dissimilar. Clustering is an example of 

unsupervised classification.  “Classification” refers  

to a procedure that assigns data objects to a set of 

classes. “Unsupervised” means that clustering does 

not rely on predefined classes and training 

examples while classifying the data objects. Thus, 

clustering is distinguished from pattern recognition 

or the areas of statistics known as discriminant 

analysis and decision analysis, which seek to find 

rules for classifying objects from a given set of pre-

classified objects. 

 

Categories of gene expression dataclustering 

Currently, a typical microarray experiment 

contains to genes, and this number is expected to 

reach to the order ofHowever, the number of 

samples involved in a micro array experimentis 

generally less than  One of the characteristics of 

gene expression data is that it ismeaningful 

to cluster both genes and samples. On one hand, 

co-expressed genes can be grouped in clusters 

based on their expression patterns [7, 20]. In such 

gene-based clustering, the genes are treated as the 

objects, while the samples are the features. On the 

other hand, the samples can be partitioned into 

homogeneous groups. Each group may correspond 

to some particular macroscopic phenotype, such as 

clinical syndromes or cancer types[24]. Such 

sample-based clustering regards the samples as 

the objects and the genes as the features. The 

distinction of gene-based clustering and sample- 

based clustering is based on different 

characteristics of clustering tasks for gene 

expression data. Some clustering algorithms, such 

as K-means and hierarchical approaches, can be 

used both to group genes and to partition samples. 

We will introduce those algorithms as gene-based 

clustering approaches, and will discuss how to 

apply the mas sample-based clustering in 

subsection 2.2.1. 
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Both the gene-based and sample-based clustering 

approaches search exclusive and exhaustive 

partitions of objects that share the same feature 

space. However, current thinking in molecular 

biology holds that only a small subset of genes 

participate in any cellular process of interest and 

that a cellular process takes place only in a subset 

of the samples. This belief calls for the subspace 

clustering to capture clusters formed by a subset of 

genes across a subset of samples. For subspace 

clustering algorithms, genes and samples are 

treated symmetrically, so that either genes or 

samples 

canberegardedasobjectsorfeatures.Furthermore,clus

tersgeneratedthroughsuchalgorithmsmay have 

different featurespaces. 

While a gene expression matrix can be analyzed 

from different angles, the gene-based, sample- 

basedclusteringandsubspaceclusteringanalysisfacev

erydifferentchallenges.Thus,wemayhave to adopt 

very different computational strategies in the three 

situations. The details of thechallenges and the 

representative clustering techniques pertinent to 

each clustering category will be discussed in 

Section2. 

 

Proximity measurement for gene expressiondata 

Proximity measurement measures the similarity (or 

distance) between two data objects. Gene ex- 

pression data objects, no matter genes or samples, 

can be formalized as numerical vectors , where  is 

the value of the   th feature for the  th data object 

and    is the number of features. The proximity 

between two objects and is measured by a 

proximity function of corresponding vectorsand. 

Euclideandistanceisoneofthemostcommonly-

usedmethodstomeasurethedistancebetween two 

data objects. The distance between objects and in 

dimensional space is definedas: 

However, for gene expression data, the 

overall shapes of gene expression patterns (or 

profiles)areofgreaterinterestthantheindividualmagni

tudesofeachfeature.Euclideandistancedoesnotscore 

well for shifting or scaled patterns (or profiles) 

[71]. To address this problem, each object vector is 

standardized with zero mean and variance one 

before calculating the distance [66, 59,56]. 

AnalternatemeasureisPearson’scorrelationc

oefficient,whichmeasuresthesimilaritybetween the 

shapes of two expression patterns (profiles). Given 

two data objects and, Pearson’scorrelation 

coefficient is defined aswhere     and     are  the 

means for and  ,  respectively.   Pearson’s  

correlation  coefficient views each object as a 

random variable with observations and measures 

thesimilaritybetweentwoobjectsbycalculatingthelin

earrelationshipbetweenthedistributionsofthetwocorr

esponding randomvariables. 

Pearson’scorrelationcoefficientiswidelyusedandhas

proveneffectiveasasimilaritymeasure for gene 

expression data [36, 64, 65, 74]. However, 

empirical study has shown that it is not robust with 

respect to outliers [30], thus potentially yielding 

false positives which assign a high similarity score 

to a pair of dissimilar patterns. If two patterns have 

a common peak or valley at a single 

feature,thecorrelationwillbedominatedbythisfeature,

althoughthepatternsattheremainingfea- tures may 

be completely dissimilar. This observation evoked 

an improved measure calledJackknife correlation 

[19, 30], defined as , whereis the Pearson’s 

correlation coefficient of data objects    and    with 

the lth feature deleted.  Use of 

theJackknifecorrelationavoidsthe“dominanceeffect”

ofsingleoutliers.MoregeneralversionsofJackknifeco

rrelationthatarerobusttomorethanoneoutliercansimil

arlybederived.However,the generalized Jackknife 

correlation, which would involve the enumeration 

of different combinations of features to be deleted, 

would be computationally costly and is rarelyused. 

Another drawback of Pearson’s correlation 

coefficient is that it assumes an approximate Gaus- 

sian distribution of the points and may not be 

robust for non-Gaussian distributions [14, 16]. To 

addressthis,theSpearman’srankordercorrelationcoef

ficienthasbeensuggestedasthesimilarity measure.  

The ranking correlation  is derived by replacing  

the numerical  expression level with its rank among 

all conditions. For example, if is the third highest 

value among,where Spearman’s correlation 

coefficient does not require the assumption 

ofGaussian 

distribution and is more robust against 

outliers than Pearson’s correlation coefficient. 

However, as a consequence of ranking, a significant 

amount of information present in the data is lost. 

Our ex- perimental results indicate that, on average, 

Spearman’s rank-order correlation coefficient 

doesnotperform as well as Pearson’s correlation 

coefficient. 

Almost all of the clustering algorithms 

mentioned in this survey use either Euclidean 

distance or Pearson’s correlation coefficient as the 

proximity measure. When Euclidean distance is 

selectedas proximity measure,  

thestandardizationprocess is usually applied,where 

is the   th feature of object    ,  while        and        

are the mean and standard deviationof  ,  

respectively.Supposeandarethestandardized“objects

”of   and   . ThenwecanproveThese two equations 

disclose the consistency between Pearson’s 

correlation coefficient and Eu- clidean distance 

after data standardization; i.e., if a pair of data 

objects   ,   has a highercorrelation than pair  then 

pair   ,   has asmaller distance  than  pair.  Thus,  we 

canexpect 
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theeffectivenessofaclusteringalgorithmtobeequivale

ntwhetherEuclideandistanceorPearson’s correlation 

coefficient is chosen as the proximitymeasure. 

 

II. CLUSTERING ALGORITHMS 
As we mentioned in Section 1.2.2, gene 

expression matrix can be analyzed in two ways. For 

gene- based clustering, genes are treated as data 

objects, while samples are considered as features. 

Conversely,forsamplebasedclustering,samplesserve

asdataobjectstobeclustered,whilegenesplay the role 

of features. The third category of cluster analysis 

applied to gene expression data, which  is subspace 

clustering, treats genes and samples symmetrically 

such that either genes or samples 

canberegardedasobjectsorfeatures.Genebased,sampl

e-basedandsubspaceclusteringfacevery different 

challenges, and different computational strategies 

are adopted for each situation. In this 

section,wewillintroducethegenebasedclustering,sa

mplebasedclustering,andsubspaceclusteringtechniq

ues,respectively. 

 

Gene-based Clustering 

In this section, we will discuss the 

problem of clustering genes based on their 

expression patterns. The purpose of gene-based 

clustering is to group together co-expressed genes 

which indicate co-function and co-regulation. We 

will first present the challenges of gene-based 

clusteringandthenreviewaseriesofclusteringalgorith

mswhichhavebeenappliedtogroupgenes.Foreachclus

tering algorithm, we will first introduce the basic 

idea of the clustering process, and then highlight 

some features of thealgorithm. 

 

K-means 

The K-means algorithm [46] is a typical 

partition-based clustering method.Given a pre-

specifiednumber!,thealgorithmpartitionsthedataset

into!disjointsubsetswhichoptimizethefollowing 

objective function: 

Here, is a data object in cluster "and is 

the centroid (mean of objects) of ". Thus, 

theobjectivefunctiontriestominimizethesumofthes

quareddistancesofobjectsfromtheircluster 

centers. 

The K-means algorithm is simple and fast.  

The time  complexity of K-means is            ,   

where is the number of iterations and is the number 

of clusters.  Our empirical study has shown 

thattheKmeansalgorithmtypicallyconvergesinasmall

numberofiterations.However,italsohasseveraldrawb

acksasagenebasedclusteringalgorithm.First,thenum

berofgeneclustersinagene expression data set is 

usually unknown in advance. To detect the optimal 

number of clusters, users usually run the algorithms 

repeatedly with different values of and compare the 

clustering results. For a large gene expression data 

set which contains thousands of genes, this 

extensive parameter fine-tuning process may not be 

practical. Second, gene expression data typically 

contain a huge amount of noise; however, the K-

means algorithm forces each gene into a cluster, 

which maycause the algorithm to be sensitive to 

noise [59,57]. 

Recently, several new clustering 

algorithms [51, 31, 59] have been proposed to 

overcome the drawbacks of the K-means algorithm. 

These algorithms typically use some global 

parameters to control the quality of resulting 

clusters (e.g., the maximal radius of a cluster and/or 

the minimal distance between clusters). Clustering 

is the process of extracting all of the qualified 

clusters from the data set. In this way, the number 

of clusters can be automatically determined and 

thosedataobjectswhichdonotbelongtoanyqualifiedcl

ustersareregardedasoutliers.However,thequalities 

ofclustersingeneexpressiondatasetsmayvarywidely.

Thus,itisoftenadifficultproblemto 

choose the appropriate globally-constraining 

parameters. 

 

Self-organizing map 

The Self-Organizing Map (SOM) was 

developed by Kohonen [39], on the basis of a 

single layered neural network. The data objects are 

presented at the input, and the output neurons are 

organized with a simple neighborhood structure 

such as a two dimensional# grid. Each neuron of 

the neural network is associated with a reference 

vector, and each data point is “mapped” to the 

neuron with the “closest” reference vector. In the 

process of running the algorithm, each data object 

actsasatrainingsamplewhichdirectsthemovementoft

hereferencevectorstowardsthedenserareasofthe 

inputvectorspace,sothatthosereferencevectorsaretrai

nedtofitthedistributionsoftheinputdata set. When the 

training is complete, clusters are identified by 

mapping all data points to the output neurons. 

One of the remarkable features of SOM is that it 

generates an intuitively-appealing map of a high-

dimensional data set in $ or $ space and places 

similar clusters near each other. Theneuron 

trainingprocessofSOMprovidesarelativelymorerobu

stapproachthanK-meanstotheclustering of highly 

noisy data [62, 29]. However, SOM requires users 

to input the number of clusters and the grid 

structure of the neuron map. These two parameters 

are preserved through the training process; hence, 

improperly-specified parameters will prevent the 

recovering of the natural cluster structure. 

Furthermore, if the data set is abundant with 

irrelevant data points, such as genes with invariant 

patterns, SOM will produce an output in which this 

type of data will populate the vast majority of 
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clusters [29]. In this case, SOM is not effective 

because most of the interesting patterns may be 

merged into only one or two clusters and cannot 

beidentified. 

 

Hierarchicalclustering 

Incontrasttopartitionbasedclustering,which

attemptstodirectlydecomposethedatasetintoaset of 

disjoint clusters, hierarchical clustering generates a 

hierarchical series of nested clusters which can be 

graphically represented by a tree, called 

dendrogram. The branches of a dendrogram not 

only record the formation of the clusters but also 

indicate the similarity between the clusters. By 

cutting the dendrogram at some level, we can 

obtain a specified number of clusters. Byreordering 

theobjectssuchthatthebranchesofthecorrespondingd

endrogramdonotcross,thedatasetcanbe arranged 

with similar objects placedtogether. 

Hierarchical clustering algorithms can be 

further divided into agglomerative approaches and 

divisiveapproachesbasedonhowthehierarchicaldend

rogramisformed.Agglomerativealgorithms (bottom-

up approach) initially regard each data object as an 

individual cluster, and at each step, 

mergetheclosestpairofclustersuntilallthegroupsarem

ergedintoonecluster.Divisivealgorithms (top-down 

approach) starts with one cluster containing all the 

data objects, and at each step split a cluster until 

only singleton clusters of individual objects remain. 

For agglomerative approaches, different measures 

of cluster proximity, such as single link, complete 

linkandminimumvariance[18,38],derivevariousmer

gestrategies.Fordivisiveapproaches,theessentialpro

blemistodecide how to split clusters at each step. 

Some are based on heuristic methods such as the 

deterministic annealing algorithm [3], while many 

others are based on the graph theoretical methods 

which we will discuss later. 

Eisen et al. [20] applied an agglomerative 

algorithm called UPGMA (Unweighted Pair Group 

Method with Arithmetic Mean) and adopted a 

method to graphically represent the clustered data 

set. In this method, each cell of the gene expression 

matrix is colored on the basis of the measured 

fluorescence ratio, and the rows of the matrix are 

re-ordered based on the hierarchical dendrogram 

structure and a consistent node-ordering rule. After 

clustering, the original gene expression matrix 

isrepresentedbyacoloredtable(aclusterimage)wherel

argecontiguouspatchesofcolorrepresent groups of 

genes that share similar expression patterns over 

multipleconditions. 

Alon et al. [3] split the genes through a 

divisive approach, called the deterministic-

annealing algorithm (DAA) [53, 52].   First,  two 

initial cluster centroids ",        ,  were randomly de-     

fined. The expression pattern of gene was 

represented by a vector, and the probability ofgene 

belonging to cluster was assigned according to a 

two-component Gaussian model:   

% &"' % &". The cluster centroids were 

recalculated by " 

' . An iterative process (the EM algorithm) 

was then applied to solve 

and "(the details of the EM algorithm will be 

discussed later). For &,  there was only one  cluster, 

"". When &was increased in small steps until a 

threshold was reached, two distinct, converged 

centroids emerged. The whole data set was 

recursively split until each clustercontained 

only one gene. 

Hierarchical clustering not only groups 

together genes with similar expression pattern but 

alsoprovidesanaturalwaytographicallyrepresentthed

ataset.Thegraphicrepresentationallowsusers 

athoroughinspectionofthewholedatasetandobtainani

nitialimpressionofthedistributionofdata. Eisen’s 

method is much favored by many biologists and 

has become the most widely-used tool in 

geneexpressiondataanalysis[20,3,2,33,50].However,

theconventionalagglomerativeapproach 

suffersfromalackofrobustness[62],i.e.,asmallperturb

ationofthedatasetmaygreatlychangethe structure of 

the hierarchical dendrogram. Another drawback of 

the hierarchical approach is its high 

computationalcomplexity.Toconstructa“complete”d

endrogam(whereeachleafnodecorresponds 

toonedataobject,andtherootnodecorrespondstothew

holedataset),theclusteringprocessshould 

takemerging (or splitting) steps. The time 

complexity for a typical agglomerative hierarchical 

algorithm is      [34].   Furthermore,  for both 

agglomerative and divisive  approaches,  the 

“greedy” nature of hierarchical clustering prevents 

the refinement of the previous clustering. If a “bad” 

decision is made in the initial steps, it can never be 

corrected in the followingsteps. 

 

Graph-theoreticalapproaches 

Givenadataset(,wecanconstructaproximitymatrix,w

here%)*,andaweightedgraph+,calledaproximityg

raph,whereeachdatapointcorrespondstoavertex. 

Forsomeclusteringmethods,eachpairofobjectsisco

nnectedbyanedgewithweightassigned 

accordingtotheproximityvaluebetweentheobjects[

56,73].Forothermethods,proximityis 

mappedonlytoeitheroronthebasisofsomethreshold

,andedgesonlyexistbetweenobjects and , where 

equals  [7, 26]. Graph-theoretical clustering 

techniques are explicitly presented 

intermsofagraph,thusconvertingtheproblemofclus

teringadatasetintosuchgraphtheoretical problems 

as finding minimum cut or maximal cliques in 

the proximity graph. 
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CLICK. CLICK (CLuster Identification via 

Connectivity Kernels) [56] seeks to identify highly 

connected components in the proximity graph as 

clusters. CLICK makes the probabilistic assump- 

tion that after standardization, pair-wise similarity 

values between elements (no matter they are in the 

same cluster or not) are normally distributed. 

Under this assumption, the weight , of an edgeis 

defined as the probability that vertices andare in the 

same cluster. The clustering process of CLICK 

iteratively finds the minimum cut in the proximity 

graph and recursively splits the data set into a set of 

connected components from the minimum cut. 

CLICK also takes two post-pruning steps to refine 

the cluster results. The adoption step handles the 

remainingsingletonsandupdatesthecurrentclusters,w

hilethemergingstepiterativelymergestwoclusterswit

hsimilarityexceeding a predefinedthreshold. 

In [56], the authors compared the 

clustering results of CLICK on two public gene 

expression data sets with those of 

GENECLUSTER [62] (a SOM approach) and 

Eisen’s hierarchical approach 

[20],respectively.Inbothcases,clustersobtainedbyCL

ICKdemonstratedbetterqualityintermsofhomogeneit

y and separation (these two concepts will be 

discussed in Section 3). However, CLICK has little 

guarantee of not going astray and generating highly 

unbalanced partitions, e.g., apartition that only 

separates a few outliers from the remaining data 

objects. Furthermore, in gene expression data, two 

clusters of co-expressed genes, "and ", may be 

highly intersected with each other. In such 

situations, "and "are not likely to be split by 

CLICK, but would be reported as one highly 

connected component. 

CAST. Ben-Dor et al. [7] introduced the 

idea of a corrupted clique graph data model. The 

input data set is assumed to come from the 

underlying cluster structure by “contamination” 

with random errors caused by the complex process 

of gene expression measurement. Specifically, it is 

assumed that the true clusters of the data points can 

be represented by a clique graph , which is a 

disjoint union of complete sub-graphs with each 

clique corresponding to a cluster. The similarity 

graphis derived from   by flipping each edge/non-

edge with probability -.  Therefore, clustering a 

dataset is equivalent to identifying the original 

clique graph  from the corrupted version   with as 

few   flips (errors) aspossible. 

In [7], Ben-Dor et al. presented both a 

theoretical algorithm and a practical heuristic called 

CAST(ClusterAffinitySearchTechnique).CASTtake

sasinputareal,symmetric,n-by-nsimilarity matrix     

(and an affinity  threshold ).  The algorithm 

searches the clusters one at a  time.   The currently  

searched cluster  is denoted by ".   Each  element  

% has an affinity value 

%   with respect to "as    %          % * . An element 

% has a high affinity value if itsatisfies % ) "; 

otherwise, % has a low affinity value. CAST 

alternates between adding high-affinity elements to 

the current cluster, and removing low-affinity 

elements from it. When the process stabilizes, "is 

considered a complete cluster, and this process 

continues with each new cluster until all elements 

have been assigned to a cluster. 

The affinity threshold ) of the CAST 

algorithm is actually the average of pairwise 

similarities within a cluster. CAST specifies the 

desired cluster quality through ) and applies a 

heuristicsearch- ing process to identify qualified 

clusters one at a time. Therefore, CAST does not 

depend on a user-defined number of clusters and 

deals with outliers effectively. Nevertheless, CAST 

has the usual difficulty of determining a “good” 

value for the global parameter). 

 

Model-basedclustering 

Modelbasedclusteringapproaches[21,76,23,45]pr

ovideastatisticalframeworktomodeltheclusterstru

ctureofgeneexpressiondata.Thedatasetisassumedt

ocomefromafinitemixtureofunderlying probability 

distributions, with each component corresponding 

to a different cluster. The goal is to estimate the 

parameters . andthat maximize the likelihood 

where  is the number of dataobjects,is the 

number of components, % is a data object (i.e., a 

gene expression pattern), % . is the 

densityfunctionof%ofcomponent"withsomeunkno

wnsetofparameters.(modelparameters), and / 

(hidden parameters) represents the probability that 

% belongs to ". Usually, theparameters and are 

estimated by the EM algorithm. The EM algorithm 

iterates between Expectation (E) steps and 

Maximization (M) steps. In the E step, hidden 

parameters are conditionally estimated from the 

data with the current estimated   .  In the M step, 

model parameters    are estimated so    as to 

maximize the likelihood of complete data given the 

estimated hidden parameters. When the 

EMalgorithmconverges,eachdataobjectisassignedto

thecomponent(cluster)withthemaximum 

conditionalprobability.Animportantadvantageofmo

delbasedapproachesisthattheyprovideanestimatedpr

obabilitythat data object will belong to cluster. As 

we will discuss in Subsection 2.1.1, gene 

expression data are typically “highly-connected”; 

there may be instances in which a single gene has a 

highcorrelationwithtwodifferentclusters.Thus,thepr

obabilisticfeatureofmodel-basedclusteringis 

particularly suitable for gene expression data. 

However, model-based clustering relies on the 

assumption that the data set fits a specific 

distribution. This may not be true in many cases. 
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Themodelingofgeneexpressiondatasets,inparticular,

isanongoingeffortbymanyresearchers,and,tothebest

ofourknowledge,thereiscurrentlynowellestablished

modeltorepresentgeneexpression data. Yeung et al. 

[76] studied several kinds of commonly-used data 

transformationsandassessedthedegreetowhichthreeg

eneexpressiondatasetsfitthemultivariantGaussianmo

delassumption. Therawvaluesfromallthreedatasets 

fittheGaussianmodelpoorlyandthereisnouniformrule

to indicate which transformation would best 

improve thisfit. 

 

A density-based hierarchical approach:DHC 

In[36],theauthorsproposedanewclusteringa

lgorithm,DHC(adensitybased,hierarchicalclustering 

method), to identify the co-expressed gene groups 

from gene expression data. DHC is developed 

based on the notions of “density” and “attraction” 

of data objects. The basic idea is to consider a 

cluster as a high-dimensional dense area, where 

data objects are “attracted” with each other. At the 

“core”partofthedensearea,objectsarecrowdedclosely

witheachother,andthushavehighdensity. 

Objects at the peripheral area of the 

cluster are relatively sparsely distributed, and are 

“attracted” to the “core” part of the dense area. 

Oncethe“density”and“attraction”ofdataobj

ectsaredefined,DHCorganizestheclusterstruc- ture 

of the data set in two-level hierarchical structures. 

At the first level, an attraction tree is con- structed 

to represent the relationship between the data 

objects in the dense area. Each node on the 

attraction tree corresponds to a data object, and the 

parent of each node is its attractor. The only 

exception is the data object which has the highest 

density in the data set. This data object becomes 

the root of the attraction tree. However, the 

structure of the attraction tree would be hard to 

inter- pret when the data set becomes large and the 

data structure becomes complicated. To address this 

problem, at the second structure level, DHC 

summarizes the cluster structure of the attraction 

tree into a density tree. Each node of the density 

tree represents a dense area. Initially, the whole 

data set is considered as a single dense area and is 

represented by the root node of the density tree. 

This dense area is then split into several sub-dense 

areas based on some criteria, where each sub-dense 

areaisrepresentedbyachildnodeoftherootnode.These

sub-denseareasarefurthersplit,untileach sub-dense 

area contains a single cluster. 

As a density-based approach, DHC 

effectively detects the co-expressed genes (which 

have rel- atively higher density) from noise (which 

have relatively lower density), and thus is robust in 

thenoisyenvironment.Furthermore,DHCisparticular

lysuitableforthe“high-connectivity”character- istic 

of gene expression data, because it first captures the 

“core” part of the cluster and then divides the 

borders of clusters on the basis of the “attraction” 

between the data objects. The two-level hi- 

erarchical representation of the data set not only 

discloses the relationship between the clusters(via 

density tree), but also organizes the relationship 

between data objects within the same cluster (via 

attraction tree). However, to compute the density of 

data objects, DHC calculates the distance be- tween 

each pair of data objects in the data set. The 

computational complexity of this step is  , which 

makes DHC not efficient. Furthermore, two global 

parameters are used in DHC to control the splitting 

process of dense areas. Therefore, DHC does not 

escape from the typical difficulty to determine the 

appropriate value of parameters. 

  

Sample-based Clustering 

Within a gene expression matrix, there are 

usually several particular macroscopic phenotypes 

ofsamplesrelatedtosomediseasesordrugeffects,such

asdiseasedsamples,normalsamplesordrug treated 

samples. The goal of sample-based clustering is to 

find the phenotype structures or sub- structures of 

the samples. Previous studies [24] have 

demonstrated that phenotypes of samples can be 

discriminated through only a small subset of genes 

whose expression levels strongly correlate with the 

class distinction. These genes are called 

informative genes. The remaining genes in the gene 

expression matrix are irrelevant to the division of 

samples of interest and thus are regarded as noise 

in the dataset. 

Although the conventional clustering 

methods, such as K-means, self-organizing maps 

(SOM),hierarchicalclustering(HC)canbedirectlyapp

liedtoclustersamplesusingallthegenesasfeatures, the 

signal-to-noise ratio (i.e., the number of 

informative genes versus that of irrelevant genes) is 

usually smaller than , which may seriously degrade 

the quality and reliability of clustering 

results[73,63].Thus,particularmethodsshouldbeappl

iedtoidentifyinformativegenesandreduce gene 

dimensionality for clustering samples to detect 

theirphenotypes. 

The existing methods of selecting 

informative genes to cluster samples fall into two 

major cat- egories: supervised analysis (clustering 

based on supervised informative gene selection) 

and unsu- pervised analysis (unsupervised 

clustering and informative gene selection). 

 

Clustering based on supervised informative 

geneselection 

The supervised approach assumes that 

phenotype information is attached to the samples, 

for exam- ple, the samples are labeled as diseased 

vs. normal. Using this information, a “classifier” 
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which only contains the informative genes can be 

constructed. Based on this “classifier”, samples can 

be clustered to match their phenotypes and labels 

can be predicted for the future coming samplesfrom 

the expression profiles. Supervised methods are 

widely used by biologists to pick up informative 

genes. The major steps to build the 

classifierinclude: 

Training sample selection. In this step, a 

subset of samples is selected to form the training 

set. Since the number of samples is limited (less 

than  ),  the size of the training set is  usually at the 

same order of magnitude with the original size 

ofsamples. 

Informative gene selection. The goal of 

informative  gene selection  step is  to pick out  

those genes whose expression patterns can 

distinguish different phenotypes of samples. For 

example,ageneisuniformlyhighinonesampleclassan

duniformlylowintheother[24].A series of 

approaches to select informative genes include: the 

neighborhood analysisapproach [24]; the 

supervised learning methods such as the support 

vector machine (SVM) [10], and a variety of 

ranking based methods [6, 43, 47, 49, 68,70]. 

Sample clustering and classification.       After 

about          [24, 42] informative genes   which 

manifest the phenotype partition within the training 

samples are selected, the whole 

setofsamplesareclusteredusingonlytheinformativeg

enesasfeatures.Sincethefeaturevolume is relatively 

small, conventional clustering algorithms, such as 

KmeansorSOM,areusuallyappliedtoclustersamples.

Thefuturecomingsamplescanalsobeclassifiedbasedo

ntheinformativegenes,thusthesupervisedmethodsca

nbeusedtosolvesampleclassification problem. 

 

Unsupervised clustering and informative 

geneselection 

Unsupervised sample-based clustering 

assumes no phenotype information being assigned 

to any sample. Since the initial biological 

identification of sample classes has been slow, 

typically evolv- ing through years of hypothesis-

driven research, automatically discovering 

samples’phenotypespresentsasignificantcontributio

ningeneexpressiondataanalysis[24].Asanunsupervis

edlearning method, clustering also serves as an 

exploratory task intended to discover unknown 

sub-structures in the samplespace. 

Unsupervised sample-based clustering is 

much more complex than supervised manner since 

no training set of samples can be utilized as a 

reference to guide informative gene selection. 

Many mature statistic methods and other 

supervised methods can not be applied without the 

phenotypes of samples known in advance. The 

following two new challenges of unsupervised 

sample-based clustering make it very hard to detect 

phenotypes of samples and select informative 

genes. 

Since the number of samples is very 

limited while the volume of genes is very large, 

such data sets are very sparse in high-dimensional 

genes space. No distinct class structures of samples 

can be properly detected by the conventional 

techniques (for example, densitybased approaches). 

Most of the genes collected may not necessarily be 

of interest.  A small percentage (less  than [24]) of 

genes which manifest meaningful sample 

phenotype structure are buried in large amount of 

noise. Uncertainty about which genes are relevant 

makes it difficult to select informative genes. 

Two general strategies have been 

employed to address the problem of unsupervised 

clustering and information gene selection: 

unsupervised gene selection and interrelated 

clustering. 

 

Unsupervised gene selection. The first strategy 

differentiates gene selection and sample cluster- ing 

as independent processes. First the gene (feature) 

dimension is reduced, then the conventional 

clusteringalgorithmsareapplied.Sincenotrainingsam

plesareavailable,geneselectiononlyrelies on 

statistical models to analyze the variance in the 

gene expressiondata. 

Alter et al. [4] applied the principal 

component analysis (PCA) to capture the majority 

ofthevariationswithinthegenesbyasmallsetofprincip

alcomponents(PCs),called“eigen-genes.”The 

samples are then projected on the new lower-

dimensional PC space. However, eigen-genes do 

not necessarily have strong correlation with 

informative genes. Due to the large number of 

irrelevant genes, discriminatory information of 

gene expression data is not guaranteed to be the 

type of user- interested variations. The 

effectiveness of applying PCA before clustering is 

discussed in[75]. 

Ding et al.  [17] used a 1   statistic method 

to select the genes which show large variance in   

the expression matrix. Then a min-max cut 

hierarchical divisive clustering approach is applied 

toclustersamples.Finally,thesamplesareorderedsucht

hatadjacentsamplesaresimilarandsamples far away 

are different. However, this approach relies on the 

assumption that informative genes exhibit larger 

variance than irrelevant genes which is not 

necessarily true for the gene expression data sets 

[75]. Therefore, the effectiveness of this approach 

also depends on the datadistribution. 

 

Interrelatedclustering.Whenwehaveacloserlookatt

heproblemsofinformativegeneselection and sample 

clustering, we will find they are closely interrelated. 
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Once informative genes have been identified, then 

it is relatively easy to use conventional clustering 

algorithms to cluster samples.On theotherhand, 

oncesampleshavebeencorrectlypartitioned,somesup

ervisedmethodssuchast-test scores and separation 

scores [68] can be used to rank the genes according 

to their relevance to the partition. Genes with high 

relevance to the partition are considered as 

informative genes. Based on thisobservation, 

thesecondstrategyhasbeensuggestedtodynamicallyu

setherelationshipbetween the genes and samples 

and iteratively combine a clustering process and a 

gene selection process. Intuitively, althoughwed 

onotknowtheexactsamplepartitioninadvance,foreac

hiterationwecan expect to obtain an approximat 

epartitionthatisclosetothetargetsamplepartition.The

approximate partition allows the selection of a 

moderately good gene subset, which will, 

hopefully, draw the approximat epartition 

evenclosertothetargetpartitioninthenextiteration.Aft

erseveraliterations,thesamplepartitionwillconverget

othetruesamplestructure,andtheselectedgeneswillbe

feasible candidates for the set of informativegenes. 

Xingetal.[73]presentedasamplebasedclusteringal

gorithmnamedCLIFF(CLusteringviaIterativeFeat

ureFiltering)whichiterativelyusesamplepartitions

asareferencetofiltergenes.In [73], non-informative 

genes were divided into the following three 

categories: 1)non-discriminative genes (genes in 

the “off” state); 2) irrelevant genes (genes do not 

respond to the physiological event);and3) 

redundantgenes(genesthatareredundantorseconda

ryresponsestothebiological 

orexperimentalconditionsthatdistinguishdifferent

samples).CLIFFfirstusesatwocomponentGaussia

nmodeltorankallgenesintermsoftheirdiscriminabil

ityandthenselectasetofmostdiscriminantgenes.Itth

enappliesagraphtheoreticalclusteringalgorithm,N

Cut(ApproximateNormalizedCut),togenerateanin

itialpartitionforthesamplesandentersaniterationpr

ocess.For each iteration, the input is a reference 

partition "of the samples and the selected genes. 

Firstascoringmethod,namedinformationgainranki

ng,isappliedtoselectasetofmost“relevant”genes 

basedonthesamplepartition".TheMarkovblanketfi

lteristhenusedtofilter“redundant”genes. 

Theremaininggenesareusedasthefeaturestogenera

teanewpartition"ofthesamplesbyNCut clustering 

algorithm. The new partition "and the remaining 

genes will be the input of the next 

iteration.Theiterationendsifthisnewpartition"isid

enticaltotheinputreferencepartition". 

However,thisapproachissensitivetotheoutliersand

noiseofthesamplessincethegenefilteringhighlydep

endsontheresultoftheNCutalgorithmwhichisnotro

busttothenoiseandoutliers.Tang et al. [64, 65] 

proposed iterative strategies for interrelated sample 

clustering and informa- tive gene selection. The 

problem of sample-based clustering is formulated 

via an interplay between sample partition detection 

and irrelevant gene pruning. The interrelated 

clustering approaches con- tained three phases: an 

initialization partition phase, an interrelated 

iteration phase, and a class validation phase. In the 

first phase, samples and genes are grouped into 

several exclusive smaller groups by conventional 

clustering methods K-means or SOM. In the 

iteration phase, the relation- ship between the 

groups of the samples and the groups of the genes 

are measured and analyzed.   A representation 

degree measurement is defined to detect the sample 

groups with high internal co- herence as well as 

large difference between each other. Sample groups 

withhighrepresentationdegreearepostedtoformaparti

alorapproximatesamplepartitioncalledrepresentative

pattern. 

The representative pattern is then used to 

direct the elimination of irrelevant genes. In turn, 

the remaining meaningful genes were used to guide 

further representative pattern detection. The ter- 

mination of the series of iterations is determined by 

evaluating the quality of the sample partition. This 

is achieved in the class validation phase by 

assigning coefficient of variation (CV) to measure 

the “internally-similar and well-separated” degree 

of the selected genes and the related sample par-

tition. The formula for the coefficient of 

variation is: "+  where ! represents thenumber 

ofsamplegroups, indicates the center sample vector 

of group    ,  and     representsthestandard deviation 

of group ). When a stable and significant sample 

partition emerges, the iteration stops, and the finial 

sample partition become the result of the process. 

This approach delineates  the relationships between 

sample groups and gene groups while conducting 

aniterativesearchforsamples’phenotypesandinforma

tivegenes.Sincetherepresentativepatternidentifiedin

eachstep is only formed by “internally-similar and 

well-separated” sample groups, this approach is 

robust to the noise and outliers of thesamples. 

 

Subspace Clustering 

The clustering algorithms discussed in the 

previous sections are examples of “global 

clustering”; for a given data set to be clustered, the 

feature space is globally determined and is shared 

by all 

 

Table 2: Some data sets for sample-based 

analysis.resultingclusters,andtheresultingclustersare

exclusiveandexhaustive.However,itiswellknown in 

molecular biology that only a small subset of the 

genes participates in any cellular process of in- 

terestandthatanycellularprocesstakesplaceonlyinasu

bsetofthesamples.Furthermore,asingle gene may 

participate in multiple pathways that may or may 
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not be coactive under all conditions,  so that a gene 

can participate in multiple clusters or in none at all. 

Recently a series of subspace clustering methods 

have been proposed [22, 11, 40] to capture 

coherence exhibited by the “blocks” within gene 

expression matrices. In this context, a “block” is a 

sub-matrix defined by a subset of genes on a subset 

ofsamples. 

Subspace clustering was first proposed by 

Agrawal et al. in general data mining domain [1] to 

find subsets of objects such that the objects appear 

as a cluster in a subspace formed by a subset of the 

features. Figure 2 shows an example of the 

subspace clusters (A and B) embedded in a gene 

expression matrix. In subspace clustering, the 

subsets of features for various subspace clusters 

can be different. Two subspace clusters can share 

some common objects and features, and 

someobjects may not belong to any subs 

pacecluster. 

For a gene expression matrix containing   

genes and   samples, the computational complexity 

of a complete combination of genes and samples is  

so that the problem of globally optimal    block 

selection is NP-hard. The subspace clustering 

methods usually define models to describe the 

target block and then adopt some heuristics to 

search in the gene-sample space. In the following 

subsection, we will discuss some representative 

subspace clustering algorithms proposed for gene 

expression matrices. In these representative 

subspace clustering algorithms, genes and 

samplesare 

 

Figure 2: Illustration of subspace clusters. treated 

symmetrically such that either genes or samples 

can be regarded as objects or features. 

 

Coupled two-way clustering(CTWC) 

Getz et al. [22] model the block as a stable 

cluster with features () and objects (), where both 

andcan be either genes or samples. The cluster is 

“stable” in the sense that, when only the features in 

are used to cluster the corresponding , does not 

split below some threshold.    CTWC provides a 

heuristic to avoid brute-force enumeration of all 

possiblecombinations.Onlysubsetsofgenesorsample

sthatareidentifiedasstableclustersinpreviousiteration

sarecandidates for the nextiteration. 

CTWC begins with only one pair of gene 

set and sample set ( , ), where is the set contain- ing 

all genes and is the set that contains all samples. A 

hierarchical clustering method, called the super-

paramagneticclusteringalgorithm(SPC)[8],isapplied

toeachset,andthestableclustersof 

genes and samples yielded by this first iteration are     

and   .  CTWC dynamically maintainstwo 

listsofstableclusters(genelist0andsamplelist0)an

dapairlistofpairsofgeneandsample subsets (   ,   ).  

For each iteration, one gene subset from   0 and 

one sample subset from   

0thathavenotbeenpreviouslycombinedarecoupled

andclusteredmutuallyasobjectsandfeatures.Newl

ygeneratedstableclustersareaddedto0and,andap

ointerthatidentifiestheparentpairisrecordedinthe

pairlisttoindicatetheoriginoftheclusters.Theiterati

oncontinuesuntilnonewclustersarefoundwhichsa

tisfysomecriterion,suchasstabilityorcriticalsize. 

CTWC was applied to a leukemia data set [24] and 

a colon cancer data set [3]. For the leukemia 

dataset,CTWCconvergesto49stablegeneclustersand

35stablesampleclustersintwoiterations. 

Forthecoloncancerdataset,76stablesampleclustersan

d97stablegeneclusterswerereportedby CTWC in 

two iterations. The experiments demonstrated the 

capability of CTWC to identify sub- structures of 

gene expression data which cannot be clearly 

identified when all genes or samples are used as 

objects orfeatures. 

However, CTWC searches for blocks in a 

deterministic manner and the clustering results are 

therefore sensitive to initial clustering settings. For 

example, suppose ( , ) is a pair of stable clusters.  

If, during the previous iterations,   was separately 

assigned to several clusters according to features  , 

or   was separated in several clusters according to 

features,then(,)canneverbefoundbyCTWCinthefollo

wingiterations.AnotherdrawbackofCTWCisthatclus

teringresults are sometimes redundant and hard to 

interpret. For example, for the colon cancer data, a 

total of  76 sample clusters and 97 gene clusters 

were identified. Among these, four different gene 

clusters partitioned the samples in a normal/cancer 

classification and were therefore redundant, 

whilemanyoftheclusterswerenotofinterest,i.e.,hardt

ointerpret.Moresatisfactoryresultswouldbeproduced 

iftheframeworkcanprovideasystematicmechanismto

minimizeredundancyandranktheresulting clusters 

according to significance. 

 

Plaidmodel 

The plaid model [40] regards gene 

expression data as a sum of multiple “layers”, 

whereeachlayermayrepresentthepresenceofaparticul

arbiologicalprocesswithonlyasubsetofgenesandasub

setofsamplesinvolved.Thegeneralizedplaidmodelisf

ormalizedas2 3,wherethe expression level 2 of 

gene under sample is considered coming from 

multiple sources. To be specific, . is the 

background expression level for the whole data 

set, and . describes the contribution from layer    

The parameter   (or 3) equals   when gene  (or 

sample  ) belongstolayer , and equals otherwise. 

Theclusteringprocesssearchesthelayersinthedatas

etoneafteranother,usingtheEMalgorithmtoestimat

ethemodelparameters.Supposethefirst! 
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layershavebeenextracted,the!)4 

layer is identified by minimizing the 

sum of squared errors 56.3 , where 623is the 

residual from the first !   layers. Theclustering 

process stops when the variance of expression 

levels within the current layer is smaller than a 

threshold. 

The plaid model was applied to a yeast 

gene expression data set combined from several 

time- series under different cellular processes [40]. 

Totally, 34 layers were extracted from the data set, 

among which interesting clusters were found. For 

example, the second layer was recognized as 

dominated by genes that produce ribosomal 

proteins involved in protein synthesis in which 

mRNA is translated. However, the plaid model is 

based on the questionable assumption that, if a 

geneparticipatesinseveralcellularprocesses,thenitse

xpressionlevelisthesumofthetermsinvolvedin the 

individual processes. Thus, the effectiveness and 

interpret ability of the discovered layers need 

further investigation. 
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